Estratégias para resolver problemas de estrutura multiplicativa com naturais e frações
DOI:
https://doi.org/10.24320/redie.2023.25.e15.4407Palavras-chave:
ensino de matemática, aritmética, educação básica, educação secundáriaAgências de fomento:
Conselleria d’Educació, Investigació, Cultura i Esport de la Generalitat Valenciana (España; I-PI 21-19, PROMETEO/2017/135), Ministerio de Universidades (España; FPU19/02965)Resumo
Este estudo analisa a forma como os alunos do ensino Primário e Secundário resolvem problemas de estrutura multiplicativa (multiplicação, divisão-partitiva e divisão-medida). Foi utilizado um questionário com nove problemas em que se considerou o uso de números naturais e frações, e se analisou tanto o nível de sucesso como as estratégias implementadas em cada tipo de problema (por curso). Os resultados mostram um menor nível de acerto nos problemas com frações do que com números naturais, pois os alunos apresentaram dificuldades em identificar que a estrutura dos problemas era a mesma. A utilização do algoritmo foi a estratégia mais utilizada; no entanto, outras estratégias surgiram dependendo do tipo de número implicado (números naturais ou frações).
Downloads
Referências
Bell, A., Fischbein, E. y Greer, B. (1984). Choice of operation in verbal arithmetic problems: The effects of number size, problem structure and context. Educational Studies in Mathematics, 15(2), 129-147. https://doi.org/10.1007/BF00305893
Callejo, M. L. y Vila, A. (2009). Approach to mathematical problem solving and students’ belief systems: Two case studies. Educational Studies in Mathematics, 72(1), 111-126. https://doi.org/10.1007/s10649-009-9195-z
Cañadas, M. C., Blanton, M. y Brizuela, B. M. (2019). Número especial sobre el pensamiento algebraico temprano. Infancia y Aprendizaje, 42(3), 469-478. https://doi.org/10.1080/02103702.2019.1638569
Castañeda, A., González, J. C. y Mendo-Ostos, L. (2017). Libros de matemáticas para primer grado de secundaria en México: problemas y estrategias de solución. Revista Electrónica de Investigación Educativa, 19(4), 97-111. https://doi.org/10.24320/redie.2017.19.4.1173
Castro, E. y Molina, M. (2007). Desarrollo de pensamiento relacional mediante trabajo con igualdades numéricas en aritmética básica. Educación Matemática, 19(2), 67-94. https://revista-educacion-matematica.org.mx/descargas/Vol19/2/vol19-2-02_REM_19-3.pdf
De Corte, E., Verschaffel, L. y Van Coillie, V. (1988). Influence of number size, problem structure and response mode on children’s solutions of multiplication word problems. The Journal of Mathematical Behavior, 7(3), 197-216. https://eric.ed.gov/?id=ED295783
Downton, A. (2009). It seems to matters not whether it is partitive or quotitive division when solving one step division problems. En R. Hunter, B. Bicknell y T. Burgess (Eds.), Crossing divides: Proceedings of the 32nd Annual Conference of the Mathematics Education Research Group of Australasia (Vol. 1, pp. 161-168). MERGA. https://merga.net.au/Public/Public/Publications/Annual_Conference_Proceedings/2009_MERGA_CP.aspx
Downton, A. y Sullivan, P. (2017). Posing complex problems requiring multiplicative thinking prompts students to use sophisticated strategies and build mathematical connections. Educational Studies in Mathematics, 95(3), 303-328. https://doi.org/10.1007/s10649-017-9751-x
Empson, S. B. y Levi, L. (2011). Extending children’s mathematics: Fractions and decimals. Heinemann.
Empson, S. B., Levi, L. y Carpenter, T. P. (2011). The algebraic nature of fractions: Developing relational thinking in elementary school. En J. Cai y E. Knuth (Eds.), Early algebraization: A global dialogue from multiple perspectives (pp. 409-428). Springer. https://doi.org/10.1007/978-3-642-17735-4_22
Erlwanger, S. H. (1973). Benny’s conception of rules and answers in IPI mathematics. Journal of Children’s Mathematical Behavior, 1(2), 7-26. https://people.wou.edu/~girodm/library/benny.pdf
González-Forte, J. M., Fernández, C. y Van Dooren, W. (2020). Is there a gap or congruency effect? A cross-sectional study in students’ fraction comparison. Studia Psychologica, 62(2), 109-122. https://doi.org/10.31577/sp.2020.02.794
González-Forte, J. M., Fernández, C., Van Hoof, J. y Van Dooren, W. (2019). Various ways to determine rational number size: an exploration across primary and secondary education. European Journal of Psychology of Education, 35(3), 549-565. https://doi.org/10.1007/s10212-019-00440-w
Greer, B. (1992). Multiplication and division as models of situation. En D. Grows (Ed.), Handbook of research on mathematics teaching and learning (pp. 276-295). McMillan.
Ivars, P. y Fernández, C. (2016). Problemas de estructura multiplicativa: Evolución de niveles de éxito y estrategias en estudiantes de 6 a 12 años. Educación Matemática, 28(1), 9-38. https://doi.org/10.24844/EM2801.01
Levain, J. P. (1992). La résolution de problèmes multiplicatifs à la fin du cycle primaire [La resolución de problemas multiplicativos al final del ciclo de primaria]. Educational Studies in Mathematics, 23(2), 139-161. https://doi.org/10.1007/BF00588053
Mulligan, J. (1992). Children’s solutions to multiplication and division word problems: A longitudinal study. Mathematics Education Research Journal, 4(1), 24-41. https://doi.org/10.1007/BF03217230
Schoenfeld, A. H., Hulbert, E. T., Petit, M. M., Ebby, C. B., Cunningham, E. P., Laird, R. E. (2017a). Developing whole number division. En E. T. Hulbert, M. M. Petit, C. B. Ebby, E. P. Cunningham y R. E. Laird (Eds.), A focus on multiplication and division: Bringing research to the classroom (pp. 129-150). Routledge. https://doi.org/10.4324/9781315163611-7
Schoenfeld, A. H., Hulbert, E. T., Petit, M. M., Ebby, C. B., Cunningham, E. P., Laird, R. E. (2017b). The OGAP Multiplication Progression. In E. T. Hulbert, M. M. Petit, C. B. Ebby, E. P. Cunningham, y R. E. Laird (Eds.), A focus on multiplication and division: Bringing research to the classroom (pp. 17-39). Routledge. https://doi.org/10.4324/9781315163611-2
Schulz, A. (2018). Relational reasoning about numbers and operations - Foundation for calculation strategy use in multi-digit multiplication and division. Mathematical Thinking and Learning, 20(2), 108-141. https://doi.org/10.1080/10986065.2018.1442641
Silver, E. A., Shapiro, L. J. y Deutsch, A. (1993). Sense making and the solution of division problems involving remainders: An examination of middle school students’ solution processes and their interpretations of solutions. Journal for Research in Mathematics Education, 24(2), 117-135. https://doi.org/10.2307/749216
Sun, X. H. (2019). Bridging whole numbers and fractions: Problem variations in Chinese mathematics textbook examples. ZDM Mathematics Education, 51(1), 109-123. https://doi.org/10.1007/s11858-018-01013-9
Üzel, D. (2018). Investigation of misconceptions and errors about division operation in fractions. Universal Journal of Educational Research, 6(11), 2656-2662. https://doi.org/10.13189/ujer.2018.061131
Van de Walle, J. A., Karp, K. S. y Bay-Williams, J. M. (2019). Developing meanings for the operations. En J. A. Van de Walle, K. S. Karp y J. M. Bay-Williams (Eds.), Elementary and middle school mathematics: Teaching developmentally (pp. 153-182). Pearson.
Van Hoof, J., Verschaffel, L. y Van Dooren, W. (2015). Inappropriately applying natural number properties in rational number tasks: Characterizing the development of the natural number bias through primary and secondary education. Educational Studies in Mathematics, 90(1) Schoenfeld, 39-56. https://doi.org/10.1007/s10649-015-9613-3
Vergnaud, G. (1997). El niño, las matemáticas y la realidad. Trillas.
Downloads
-
HTML
-
PDF
-
XML
-
EPUB
-
ÁUDIO RESUMOESPANHOL 750
Visitas à página de resumo do artigo: 1956
Publicado
2023-05-23Licença
Copyright (c) 2023 Cristina Zorrilla, Pedro Ivars, Ceneida Fernández
Este trabalho está licenciado sob uma licença Creative Commons Attribution-NonCommercial 4.0 International License.