Strategies for Solving Multiplicative Structure Problems with Natural Numbers and Fractions
DOI:
https://doi.org/10.24320/redie.2023.25.e15.4407Keywords:
mathematics instruction, arithmetic, basic education, secondary educationSupporting Agencies:
Conselleria d’Educació, Investigació, Cultura i Esport de la Generalitat Valenciana (España; I-PI 21-19, PROMETEO/2017/135), Ministerio de Universidades (España; FPU19/02965)Abstract
This study explores how elementary and secondary school students solve multiplicative structure problems (multiplication, partitive division, and measurement division). A questionnaire was used with nine problems involving natural numbers and fractions, and the research examined both the level of success of students and the strategies employed for each type of problem (by grade level). The results show a lower level of success in problems with fractions than with natural numbers, with students having difficulty recognizing that the structure of the problems was the same. Algorithms were the most commonly used strategy, but other strategies also emerged, depending on the type of number involved (natural numbers or fractions).
Downloads
References
Bell, A., Fischbein, E. y Greer, B. (1984). Choice of operation in verbal arithmetic problems: The effects of number size, problem structure and context. Educational Studies in Mathematics, 15(2), 129-147. https://doi.org/10.1007/BF00305893
Callejo, M. L. y Vila, A. (2009). Approach to mathematical problem solving and students’ belief systems: Two case studies. Educational Studies in Mathematics, 72(1), 111-126. https://doi.org/10.1007/s10649-009-9195-z
Cañadas, M. C., Blanton, M. y Brizuela, B. M. (2019). Número especial sobre el pensamiento algebraico temprano. Infancia y Aprendizaje, 42(3), 469-478. https://doi.org/10.1080/02103702.2019.1638569
Castañeda, A., González, J. C. y Mendo-Ostos, L. (2017). Libros de matemáticas para primer grado de secundaria en México: problemas y estrategias de solución. Revista Electrónica de Investigación Educativa, 19(4), 97-111. https://doi.org/10.24320/redie.2017.19.4.1173
Castro, E. y Molina, M. (2007). Desarrollo de pensamiento relacional mediante trabajo con igualdades numéricas en aritmética básica. Educación Matemática, 19(2), 67-94. https://revista-educacion-matematica.org.mx/descargas/Vol19/2/vol19-2-02_REM_19-3.pdf
De Corte, E., Verschaffel, L. y Van Coillie, V. (1988). Influence of number size, problem structure and response mode on children’s solutions of multiplication word problems. The Journal of Mathematical Behavior, 7(3), 197-216. https://eric.ed.gov/?id=ED295783
Downton, A. (2009). It seems to matters not whether it is partitive or quotitive division when solving one step division problems. En R. Hunter, B. Bicknell y T. Burgess (Eds.), Crossing divides: Proceedings of the 32nd Annual Conference of the Mathematics Education Research Group of Australasia (Vol. 1, pp. 161-168). MERGA. https://merga.net.au/Public/Public/Publications/Annual_Conference_Proceedings/2009_MERGA_CP.aspx
Downton, A. y Sullivan, P. (2017). Posing complex problems requiring multiplicative thinking prompts students to use sophisticated strategies and build mathematical connections. Educational Studies in Mathematics, 95(3), 303-328. https://doi.org/10.1007/s10649-017-9751-x
Empson, S. B. y Levi, L. (2011). Extending children’s mathematics: Fractions and decimals. Heinemann.
Empson, S. B., Levi, L. y Carpenter, T. P. (2011). The algebraic nature of fractions: Developing relational thinking in elementary school. En J. Cai y E. Knuth (Eds.), Early algebraization: A global dialogue from multiple perspectives (pp. 409-428). Springer. https://doi.org/10.1007/978-3-642-17735-4_22
Erlwanger, S. H. (1973). Benny’s conception of rules and answers in IPI mathematics. Journal of Children’s Mathematical Behavior, 1(2), 7-26. https://people.wou.edu/~girodm/library/benny.pdf
González-Forte, J. M., Fernández, C. y Van Dooren, W. (2020). Is there a gap or congruency effect? A cross-sectional study in students’ fraction comparison. Studia Psychologica, 62(2), 109-122. https://doi.org/10.31577/sp.2020.02.794
González-Forte, J. M., Fernández, C., Van Hoof, J. y Van Dooren, W. (2019). Various ways to determine rational number size: an exploration across primary and secondary education. European Journal of Psychology of Education, 35(3), 549-565. https://doi.org/10.1007/s10212-019-00440-w
Greer, B. (1992). Multiplication and division as models of situation. En D. Grows (Ed.), Handbook of research on mathematics teaching and learning (pp. 276-295). McMillan.
Ivars, P. y Fernández, C. (2016). Problemas de estructura multiplicativa: Evolución de niveles de éxito y estrategias en estudiantes de 6 a 12 años. Educación Matemática, 28(1), 9-38. https://doi.org/10.24844/EM2801.01
Levain, J. P. (1992). La résolution de problèmes multiplicatifs à la fin du cycle primaire [La resolución de problemas multiplicativos al final del ciclo de primaria]. Educational Studies in Mathematics, 23(2), 139-161. https://doi.org/10.1007/BF00588053
Mulligan, J. (1992). Children’s solutions to multiplication and division word problems: A longitudinal study. Mathematics Education Research Journal, 4(1), 24-41. https://doi.org/10.1007/BF03217230
Schoenfeld, A. H., Hulbert, E. T., Petit, M. M., Ebby, C. B., Cunningham, E. P., Laird, R. E. (2017a). Developing whole number division. En E. T. Hulbert, M. M. Petit, C. B. Ebby, E. P. Cunningham y R. E. Laird (Eds.), A focus on multiplication and division: Bringing research to the classroom (pp. 129-150). Routledge. https://doi.org/10.4324/9781315163611-7
Schoenfeld, A. H., Hulbert, E. T., Petit, M. M., Ebby, C. B., Cunningham, E. P., Laird, R. E. (2017b). The OGAP Multiplication Progression. In E. T. Hulbert, M. M. Petit, C. B. Ebby, E. P. Cunningham, y R. E. Laird (Eds.), A focus on multiplication and division: Bringing research to the classroom (pp. 17-39). Routledge. https://doi.org/10.4324/9781315163611-2
Schulz, A. (2018). Relational reasoning about numbers and operations - Foundation for calculation strategy use in multi-digit multiplication and division. Mathematical Thinking and Learning, 20(2), 108-141. https://doi.org/10.1080/10986065.2018.1442641
Silver, E. A., Shapiro, L. J. y Deutsch, A. (1993). Sense making and the solution of division problems involving remainders: An examination of middle school students’ solution processes and their interpretations of solutions. Journal for Research in Mathematics Education, 24(2), 117-135. https://doi.org/10.2307/749216
Sun, X. H. (2019). Bridging whole numbers and fractions: Problem variations in Chinese mathematics textbook examples. ZDM Mathematics Education, 51(1), 109-123. https://doi.org/10.1007/s11858-018-01013-9
Üzel, D. (2018). Investigation of misconceptions and errors about division operation in fractions. Universal Journal of Educational Research, 6(11), 2656-2662. https://doi.org/10.13189/ujer.2018.061131
Van de Walle, J. A., Karp, K. S. y Bay-Williams, J. M. (2019). Developing meanings for the operations. En J. A. Van de Walle, K. S. Karp y J. M. Bay-Williams (Eds.), Elementary and middle school mathematics: Teaching developmentally (pp. 153-182). Pearson.
Van Hoof, J., Verschaffel, L. y Van Dooren, W. (2015). Inappropriately applying natural number properties in rational number tasks: Characterizing the development of the natural number bias through primary and secondary education. Educational Studies in Mathematics, 90(1) Schoenfeld, 39-56. https://doi.org/10.1007/s10649-015-9613-3
Vergnaud, G. (1997). El niño, las matemáticas y la realidad. Trillas.
Downloads
-
HTML
-
PDF
-
XML
-
EPUB
-
ABSTRACT AUDIOSPANISH 748
Article abstract page views: 1942
Published
2023-05-23License
Copyright (c) 2023 Revista Electrónica de Investigación Educativa
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.