Representations in Physics: Construction and Validation of a Questionnaire for Higher Secondary Education
DOI:
https://doi.org/10.24320/redie.2020.22.e14.1728Keywords:
Science Education, assessment, representations.Supporting Agencies:
CONACYT Proyecto, 238712, UNAM-PAPIME- PE302315Abstract
This paper report the construction of a questionnaire to investigate high school students’ representations of physics concepts. The development of the instrument went through different stages of revisions and implementation among students and experts in Physics. The final version was applied to a sample of 120 high school students (Science and Humanities College, UNAM). Questionaire validity included item analysis of intelligibility, completeness, and structure equivalence. The Rasch Partial Credit Model analysis was conducted to identify the different levels of knowledge integration of students’ responses. Alpha Cronbach was calculated (0.75) as a measure of reliability. Results show that the questionnaire characterizes properly the diverse types of external representations used by students –e.g. written answers, schemes, graphs and drawings. The results obtained through this kind of questionnaires can contribute to the new theoretical approaches in science education focused on representations and their dynamics of change in students’ thinking.Downloads
References
American Educational Research Association, American Psychological Association y National Council on Measurement in Education. (2004). Standards for educational and psychological testing. AERA.
Bani-Salameh, H. N. (2017). How persistent are the misconceptions about force and motion held by college students? Physics Education, 52(1), 1-7.
Caleon, I. y Subramaniam, R. (2010). Development and application of a Three-Tier diagnostic test to assess secondary students’ understanding of waves. International Journal of Science Education, 37(7), 939-961.
diSessa, A. (2004). Coordination and contextuality in conceptual change. En E. F. Redish y M. Vincentini (Eds.), Research on physics education: proceedings of the international school of physics “Enrico Fermi”, (pp. 137-156). IOS Press.
diSessa, A. A. (2002). Why "conceptual ecology" es a good idea. En M. Limón y L. Mason (Eds.), Reconsidering conceptual change: issues in theory and practice (pp. 29-60). Kluwer Academic Publishers.
Duit, R. y Treagust, D. F. (1998). Learning in science- from behaviourism towards social constructivism and beyond. En B. Fraser y K. Tobin (Eds.), International handbook of science education, Part 1, (pp. 3-25). Kluwer.
Duschl, R. y Grandy, R. (2008). Reconsidering the character and role of inquiry in school science: framing the debates. En R. Duschl y R. Grandy (Eds.), Teaching scientific inquiry: recommendations for research and implementation (pp. 1-37). Sense Publishers.
Flores, F. (2004). El cambio conceptual: interpretaciones, transformaciones y perspectivas. Educación Química, 15(3), 256-269. http://dx.doi.org/10.22201/fq.18708404e.2004.3.66183
Flores, F. y Gallegos, L. (1999). Construcción de conceptos físicos en estudiantes. La influencia del contexto, Perfiles Educativos, 21(85), 90-103.
Flores, F. y Valdez, R. (2007). Enfoques epistemológicos y cambios representacionales y conceptuales. En J. Pozo y F. Flores (Eds.), Cambio conceptual y representacional en el aprendizaje y la enseñanza de la ciencia (pp. 21-35). Antonio Machado Libros.
Flores-Camacho, F., Gallegos-Cázares, L., Garritz, A. y García-Franco, A. (2007). Incommensurability and multiple models: representations of the structure of matter in undergraduate chemistry students. Science & Education, 16, 775-800. https://doi.org/10.1007/s11191-006-9049-3
Gilbert, J. (2008). Visualization: an emergent field of practice and enquiry in science education. En J. K Gilbert, M. Reiner y M. Nakhleh (Eds.), Visualization: theory and practice in science education (pp. 1-2). Springer.
Gómez, M. y Pozo, J. (2009). Aprender y enseñar ciencia: del conocimiento cotidiano al conocimiento científico. Morata.
Haladyna, T., Downing, S. M y Rodríguez, M. C. (2002). A review of multiple-choice item-writing guidelines for classroom assessment. Applied Measurement in Education, 15(3), 309-333. https://doi.org/10.1207/S15324818AME1503_5
Hestenes, D., Wells, M. y Swackhamer, G. (1992). Force concept inventory. The Physics Teacher, 30, 141-158. https://doi.org/10.1119/1.2343497
Hierrezuelo, M. J. y Montero, M. A. (1988). La ciencia de los alumnos. Laia/Ministerio de Educación y Ciencia.
Hofer, S. I., Schumacher, R. y Rubin, H. (2017). The test of basic mechanics conceptual understanding (bMCU): using Rasch analysis to develop and evaluate an efficient multiple choice test on Newton’s mechanics, International Journal of STEM Education, 4(18), 2-20. https://doi.org/10.1186/s40594-017-0080-5
Kozma, R. y Russell, J. (2005). Students becoming chemists: developing representational competence, en J. Gilbert (Ed.), Visualization in science education (pp. 121-146). Springer.
Lee, H-S., Liu, O, L. y Linn, M. (2011). Validating measurement of knowledge integration in science using multiple-choice and explanation items. Applied Measurement in Education, 24(2), 115-136. https://doi.org/10.1080/08957347.2011.554604
Lima, C. E. (2009). Changes in state of matter: a study of validity of Texas math and science diagnostic system (Tesis de maestría). Texas University.
Miller, R. L., Streveler, R., Yang, D. y Santiago Román A. I. (2011). Identifying and repairing student misconceptions in thermal and transport science: Concept inventories and schema training studies. Chemical Engineering Education, 45(3), 203-210. https://ufdcimages.uflib.ufl.edu/AA/00/00/03/83/00193/AA00000383_00193.pdf
Neumann I., Neumann, K. y Nehm, R. (2011). Evaluating instrument quality in science education: Rasch-based analyses of a nature of science test. International Journal of Science Education, 33(10), 1375-1405. https://doi.org/10.1080/09500693.2010.511297
Perkins, D. (1994). A new look in representations for mathematics and science learning. Instructional Science, 22, 1-37.
Pozo, J. I. (2014). Aprendizaje de la ciencia mediante múltiples sistemas de representación. En F. Flores (Ed.), Las tecnologías digitales en la enseñanza experimental de las ciencias: fundamentos cognitivos y procesos didácticos (pp. 13-31). UNAM-Porrúa.
Prain, V. y Tytler, R. (2012). Learning through construction representation in science: a framework of representational construction affordances. International Journal of Science Education , 34(17), 2751-2773. https://doi.org/10.1080/09500693.2011.626462
Thornton, R. K y Sokoloff, D. R. (1998). Assessing student learning of Newton’s laws: the force and motion conceptual evaluation and the evaluation of de active learning laboratory and lecture curricula, American Journal of Physics, 66(4), 338-352. https://doi.org/10.1119/1.18863
Wandersee, J., Mintzes, J. y Novak, J. (1994). Research on alternative conceptions in science. En D. Gabel (Ed.), Handbook of research on science teaching and learning (pp. 177-210). Mcmillan Publishing Company.
Wilson, M. (2005). Constructing measures: an item response modeling approach. Lawrence Erlbaum Associates.
Yen, W. M. y Fitzpatrick, A. R. (2006). Item response theory. En R. Brennan (Ed.), Educational Measurement (pp. 111-154). American Council of Education, Praeger.
Downloads
-
HTML
-
PDF
-
XMLSPANISH 142
Article abstract page views: 2603
Published
2020-05-07License
Copyright (c) 2020 Revista Electrónica de Investigación Educativa
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.