General Problem Solving Strategies Employed in the Mexican Mathematical Olympiad
Keywords:
Mathematics, problem solving, cognitive processes, testing.Abstract
This article describes the general strategies applied to problem solving in the State Math Olympiad selection test, in Puebla, Mexico. It analyzes the answers of 91 participants, ages 14 to 17, from junior high school and high school. Whether participants reached a problem solution or not, they rendered their results in one answer sheet and the arguments for those results in other. These answer sheets were used to form a database with 546 results. The sheets selected for the database were those in which participants identified the unknown factor, data and condition of the problem, in addition to have offered one or several solution strategies. Then, strategies were verbally described, their usage frequency calculated, and their effect on the different branches of mathematics depending on the problem analyzed. The strategy or strategies provided by participants were examined to identify stages of problem solving. The results showed that only 5% of the answer sheets had complete solutions. That emphasizes the need to systematize the State training courses for the National Olympiad. The importance of the training course is directly related to its purpose: to prepare young people for the National Olympiad and to enrich the Higher Education System of Puebla with students interested in doing science careers, with the ability to develop their hypothetical–deductive reasoning successfully.Downloads
Download data is not yet available.
References
Aguilar, M. A. y Cepeda Hinojosa, B. (Coords.). (2004). Preguntas y sentido de las respuestas en las pruebas nacionales. México: Instituto Nacional para la Evaluación de la Educación.
Alarcón, J., Arriaga, A., Bonilla, H. y Rosas, R. (1994). Secuencia y Organización de contenidos. Matemáticas. Educación Secundaria. México: Secretaría de Educación Pública.
Cabañas Sánchez, M. G. (2000). Los problemas… ¿Cómo enseño a resolverlos? México: Grupo Editorial Iberoamérica.
Davis, R. B. (1986). Learning mathematics: The cognitive science approach to mathematics education. New York: Ablex.
Pólya, G. (1981). Cómo plantear y resolver problemas. México: Editorial Trillas.
Rich, E. (1983). Artificial intelligence. New York: McGraw-Hill.
Santos Trigo, L. M. (2006). Aportaciones de la investigación en Educación Matemática a la Instrucción. Números 63, 25-40.
Santos Trigo, L. M. (1996). Consideraciones metodológicas en la investigación en educación matemática. Revista Latinoamericana de Psicología, 28 (3), 533-546.
Santos Trigo, L. M. (1997). Principios y métodos de la resolución de problemas. México: Grupo Editorial Iberoamérica.
Alarcón, J., Arriaga, A., Bonilla, H. y Rosas, R. (1994). Secuencia y Organización de contenidos. Matemáticas. Educación Secundaria. México: Secretaría de Educación Pública.
Cabañas Sánchez, M. G. (2000). Los problemas… ¿Cómo enseño a resolverlos? México: Grupo Editorial Iberoamérica.
Davis, R. B. (1986). Learning mathematics: The cognitive science approach to mathematics education. New York: Ablex.
Pólya, G. (1981). Cómo plantear y resolver problemas. México: Editorial Trillas.
Rich, E. (1983). Artificial intelligence. New York: McGraw-Hill.
Santos Trigo, L. M. (2006). Aportaciones de la investigación en Educación Matemática a la Instrucción. Números 63, 25-40.
Santos Trigo, L. M. (1996). Consideraciones metodológicas en la investigación en educación matemática. Revista Latinoamericana de Psicología, 28 (3), 533-546.
Santos Trigo, L. M. (1997). Principios y métodos de la resolución de problemas. México: Grupo Editorial Iberoamérica.
Downloads
-
HTML
-
PDF
-
HTML
-
PDFENGLISH 891
Article abstract page views: 2374
Published
2007-11-01