Estrategias para resolver problemas de estructura multiplicativa con naturales y fracciones

Autores

DOI:

https://doi.org/10.24320/redie.2023.25.e15.4407

Palabras clave:

enseñanza de las matemáticas, aritmética, educación básica, educación secundaria

Agencias de apoyo:

Conselleria d’Educació, Investigació, Cultura i Esport de la Generalitat Valenciana (España; I-PI 21-19, PROMETEO/2017/135), Ministerio de Universidades (España; FPU19/02965)

Resumen

En el estudio se analiza la forma en que los estudiantes de Primaria y Secundaria resuelven problemas de estructura multiplicativa (multiplicación, división-partitiva y división-medida). Se utilizó un cuestionario con nueve problemas en los que se tomó en cuenta el uso de números naturales y fracciones, y se analizó tanto el nivel de éxito como las estrategias implementadas en cada tipo de problema (por curso). Los resultados muestran un menor nivel de éxito en los problemas con fracciones que con números naturales, ya que los estudiantes presentaron dificultades para identificar que la estructura de los problemas era la misma. El uso del algoritmo fue la estrategia más utilizada; no obstante, emergieron otras estrategias dependiendo del tipo de números implicados (naturales o fracciones).

 

Descargas

Los datos de descargas todavía no están disponibles.

Referencias

Bell, A., Fischbein, E. y Greer, B. (1984). Choice of operation in verbal arithmetic problems: The effects of number size, problem structure and context. Educational Studies in Mathematics, 15(2), 129-147. https://doi.org/10.1007/BF00305893

Callejo, M. L. y Vila, A. (2009). Approach to mathematical problem solving and students’ belief systems: Two case studies. Educational Studies in Mathematics, 72(1), 111-126. https://doi.org/10.1007/s10649-009-9195-z

Cañadas, M. C., Blanton, M. y Brizuela, B. M. (2019). Número especial sobre el pensamiento algebraico temprano. Infancia y Aprendizaje, 42(3), 469-478. https://doi.org/10.1080/02103702.2019.1638569

Castañeda, A., González, J. C. y Mendo-Ostos, L. (2017). Libros de matemáticas para primer grado de secundaria en México: problemas y estrategias de solución. Revista Electrónica de Investigación Educativa, 19(4), 97-111. https://doi.org/10.24320/redie.2017.19.4.1173

Castro, E. y Molina, M. (2007). Desarrollo de pensamiento relacional mediante trabajo con igualdades numéricas en aritmética básica. Educación Matemática, 19(2), 67-94. https://revista-educacion-matematica.org.mx/descargas/Vol19/2/vol19-2-02_REM_19-3.pdf

De Corte, E., Verschaffel, L. y Van Coillie, V. (1988). Influence of number size, problem structure and response mode on children’s solutions of multiplication word problems. The Journal of Mathematical Behavior, 7(3), 197-216. https://eric.ed.gov/?id=ED295783

Downton, A. (2009). It seems to matters not whether it is partitive or quotitive division when solving one step division problems. En R. Hunter, B. Bicknell y T. Burgess (Eds.), Crossing divides: Proceedings of the 32nd Annual Conference of the Mathematics Education Research Group of Australasia (Vol. 1, pp. 161-168). MERGA. https://merga.net.au/Public/Public/Publications/Annual_Conference_Proceedings/2009_MERGA_CP.aspx

Downton, A. y Sullivan, P. (2017). Posing complex problems requiring multiplicative thinking prompts students to use sophisticated strategies and build mathematical connections. Educational Studies in Mathematics, 95(3), 303-328. https://doi.org/10.1007/s10649-017-9751-x

Empson, S. B. y Levi, L. (2011). Extending children’s mathematics: Fractions and decimals. Heinemann.

Empson, S. B., Levi, L. y Carpenter, T. P. (2011). The algebraic nature of fractions: Developing relational thinking in elementary school. En J. Cai y E. Knuth (Eds.), Early algebraization: A global dialogue from multiple perspectives (pp. 409-428). Springer. https://doi.org/10.1007/978-3-642-17735-4_22

Erlwanger, S. H. (1973). Benny’s conception of rules and answers in IPI mathematics. Journal of Children’s Mathematical Behavior, 1(2), 7-26. https://people.wou.edu/~girodm/library/benny.pdf

González-Forte, J. M., Fernández, C. y Van Dooren, W. (2020). Is there a gap or congruency effect? A cross-sectional study in students’ fraction comparison. Studia Psychologica, 62(2), 109-122. https://doi.org/10.31577/sp.2020.02.794

González-Forte, J. M., Fernández, C., Van Hoof, J. y Van Dooren, W. (2019). Various ways to determine rational number size: an exploration across primary and secondary education. European Journal of Psychology of Education, 35(3), 549-565. https://doi.org/10.1007/s10212-019-00440-w

Greer, B. (1992). Multiplication and division as models of situation. En D. Grows (Ed.), Handbook of research on mathematics teaching and learning (pp. 276-295). McMillan.

Ivars, P. y Fernández, C. (2016). Problemas de estructura multiplicativa: Evolución de niveles de éxito y estrategias en estudiantes de 6 a 12 años. Educación Matemática, 28(1), 9-38. https://doi.org/10.24844/EM2801.01

Levain, J. P. (1992). La résolution de problèmes multiplicatifs à la fin du cycle primaire [La resolución de problemas multiplicativos al final del ciclo de primaria]. Educational Studies in Mathematics, 23(2), 139-161. https://doi.org/10.1007/BF00588053

Mulligan, J. (1992). Children’s solutions to multiplication and division word problems: A longitudinal study. Mathematics Education Research Journal, 4(1), 24-41. https://doi.org/10.1007/BF03217230

Schoenfeld, A. H., Hulbert, E. T., Petit, M. M., Ebby, C. B., Cunningham, E. P., Laird, R. E. (2017a). Developing whole number division. En E. T. Hulbert, M. M. Petit, C. B. Ebby, E. P. Cunningham y R. E. Laird (Eds.), A focus on multiplication and division: Bringing research to the classroom (pp. 129-150). Routledge. https://doi.org/10.4324/9781315163611-7

Schoenfeld, A. H., Hulbert, E. T., Petit, M. M., Ebby, C. B., Cunningham, E. P., Laird, R. E. (2017b). The OGAP Multiplication Progression. In E. T. Hulbert, M. M. Petit, C. B. Ebby, E. P. Cunningham, y R. E. Laird (Eds.), A focus on multiplication and division: Bringing research to the classroom (pp. 17-39). Routledge. https://doi.org/10.4324/9781315163611-2

Schulz, A. (2018). Relational reasoning about numbers and operations - Foundation for calculation strategy use in multi-digit multiplication and division. Mathematical Thinking and Learning, 20(2), 108-141. https://doi.org/10.1080/10986065.2018.1442641

Silver, E. A., Shapiro, L. J. y Deutsch, A. (1993). Sense making and the solution of division problems involving remainders: An examination of middle school students’ solution processes and their interpretations of solutions. Journal for Research in Mathematics Education, 24(2), 117-135. https://doi.org/10.2307/749216

Sun, X. H. (2019). Bridging whole numbers and fractions: Problem variations in Chinese mathematics textbook examples. ZDM Mathematics Education, 51(1), 109-123. https://doi.org/10.1007/s11858-018-01013-9

Üzel, D. (2018). Investigation of misconceptions and errors about division operation in fractions. Universal Journal of Educational Research, 6(11), 2656-2662. https://doi.org/10.13189/ujer.2018.061131

Van de Walle, J. A., Karp, K. S. y Bay-Williams, J. M. (2019). Developing meanings for the operations. En J. A. Van de Walle, K. S. Karp y J. M. Bay-Williams (Eds.), Elementary and middle school mathematics: Teaching developmentally (pp. 153-182). Pearson.

Van Hoof, J., Verschaffel, L. y Van Dooren, W. (2015). Inappropriately applying natural number properties in rational number tasks: Characterizing the development of the natural number bias through primary and secondary education. Educational Studies in Mathematics, 90(1) Schoenfeld, 39-56. https://doi.org/10.1007/s10649-015-9613-3

Vergnaud, G. (1997). El niño, las matemáticas y la realidad. Trillas.

Descargas

Visitas a la página del resumen del artículo: 1928

Publicado

2023-05-23

Artículos similares