Intelligent Tutor with Emotion Recognition and Student Emotion Management for Math Performance

Authors

  • Mari­a Luci­a Barron Estrada Instituto Tecnológico de CuliacánDepartamento de Ciencias de la Computación
  • Ramón Zatarain Cabada Instituto Tecnológico de Culiacán Departamento de Ciencias de la Computación
  • Yasmín Hernández Pérez Instituto de Investigaciones Eléctricas Gerencia de Tecnologías de la Información

Keywords:

Web-based instruction, Intelligent tutoring systems, Computer-based learning.

Abstract

This research presents the development, implementation, and testing of an Intelligent Tutoring System for math in third grade elementary students, it identifies and manages the emotional state of the student; it produces affective feedback for the student during the course that also it is part of a social network. Emotions are recognized via facial expressions by means of an artificial neural network. The social network and the intelligent tutoring system with affective management have been tested in public and private elementary schools with very satisfying results.

Downloads

Download data is not yet available.

References

Anderson, R., Boyle, C. F., Corbett, A. T. y Lewis, M. W. (1990). Cognitive modeling and intelligent tutoring. Artificial Intelligence, 42, 17-49.

Arroyo, I., Woolf, B., Cooper, D., Burleson, W., Muldner, K. y Christopherson, R. (2009). Emotions sensors go to school. In V. Diminitrova, R., Mizoguchi, B. Du Boulay y A. Graesser (Eds.) Proceedings of the 14th International Conference on Artificial Intelligence in Education (pp. 17-24). Amsterdam: IOS Press.

Conati, C. y McLaren, H. (2004). Evaluating a probabilistic model of student affect. Proceedings of ITS 2004. Documento presentado en la 7a. Conferencia Internacional de Sistemas Tutoriales Inteligentes (vol. 3220). Heidelberg: Springer.

Davidson, R. J., Scherer, K. R. y Goldsmith, H. H. (Eds.). (2003). Handbook of affective sciences. Oxford University Press.

D’Mello, S. K., Picard, R. W. y Graesser, A. C. (2007). Towards an affective-sensitive autotutor. Special issue on Intelligent Educational Systems. IEEE Intelligent Systems, 22(4), 53-61.

D’Mello, S. K., Dowell, N. y Graesser, A. C. (2009). Cohesion relationships in tutorial dialogue as predictors of affective states. En V. Dimitrova, R. Mizoguchi, B. du Boulay, y A. Graesser (Eds.), Proceedings of 14th International Conference on Artificial Intelligence In Education (pp. 9-16). Amsterdam: IOS Press.

D’Mello, S., Lehman, B. y Graesser, A. C. (2011). A motivationally supportive affect-sensitive autotutor. New perspectives on affect and learning technologies, explorations in the learning sciences, instructional systems and performance technologies, 3, pp. 113-126, Springer science+business media.

Dong, A. (2011). The role of affect in creative minds. New perspectives on affect and learning technologies, Explorations in the learning sciences, instructional systems and performance technologies, 3, pp. 217-232, Springer science+business media.

Du Boulay, B. (2011). Towards a motivationally intelligence pedagogy: how should an intelligent tutor respond to the unmotivated or the demotivated?. New perspectives on affect and learning technologies, Explorations in the learning sciences, instructional systems and performance technologies, 3, pp. 41-52, Springer science+business media.

Ekman, P. (1999). Facial Expressions. Nueva York: John Wiley & Sons Ltd.

Fredrickson, B. L. (2001). The role of positive emotions in positive psychology: The broaden-and-build theory of positive emotions. American Psychologist, 56, 218-226.

Forbes-Riley, K., Litman, D. J. (2009). Adapting to student uncertainty improves tutoring dialogues. Brighton, Inglaterra: IOS Press.

Hernández, Y., Sucar, L. E., Arroyo G. (2008). Building an affective model for intelligent tutoring systems with base on teachers’ expertise, pp 754-764, Springer-verlag.

Langner, O., Dotsch, R., Bijlstra, G., Wigboldus, D., Hawk, S. y van Knippenberg, A. (2010). Presentation and validation of the Radboud Faces Database. Cognition & Emotion, 1377-1388.

Lepper, M. R. and Hodell, M. (1989). Intrinsic motivation in the classroom. En C. Ames y R. E. Ames (Eds.) Research in motivation in education (pp. 73-105). Nueva York: Academic.

Loewenstein, G. y Lerner, J.S. (2003). The role of affect in decision making. En R. J. Davidson, K. R. Scherer, H. Hill Goldsmith (Eds.), Handbook of affective sciences (pp. 619-642). Oxford University Press.

Nugent, P. M. (2007). Lattice multiplication in a preservice classroom. Mathematics Teaching in the Middle School, 13(2), 110-113.

Picard, R. W. (1995). Affective computing. Reporte técnico 321. Massachusetts Institute of Technology.

Picard, R. W., Papert, S., Bender, W., Blumberg, B., Breazeal, C., Cavallo, D., Machover, T., Rrsnick, M., Roy, D. y Strohecker, C. (2004). Affective Learning-A Manifesto. BT Technical Journal, 2(4), 253-269.

Scherer, K. R. (2009). The dynamic architecture of emotions: Evidence for the component process model. Cognition & Emotion, 23, 1307-1351.

Van de Walle, J. A. y Lovin, L. H. (2006). Teaching Student-centered Mathematics, grades 5-8. Saddle River, NJ: Pearson Education.

Vygotsky, L. S. (1978). Mind in Society: The development of higher psychological process. Cambridge, MA. Harvard University Press,

Downloads

Article abstract page views: 1570

Published

2014-10-27

Similar Articles