Creative Mathematical Activity and Developing Mathematical Talent Through the Praxeological Model
DOI:
https://doi.org/10.24320/redie.2022.24.e01.4167Keywords:
creativity, talent, generalization, mathematicsAbstract
This paper presents a theoretical model for the study of mathematical talent, grounded in the Anthropological Theory of Didactics (ATD) and the notion of creativity. This model proposes two components of creative mathematical activity: the mathematical component, which supports mathematical techniques; and the creative component, defined by four functions: producing new techniques, optimizing techniques, considering tasks from different angles, and adapting a technique. Based on the theoretical model and a reference epistemological model on infinite sequences, a learning design comprising six problem situations was developed and then implemented in an institution established to foster mathematical talent. The analysis of two tasks performed by a pair of children offers a case study that illustrates how tackling challenging tasks of the same kind, in a favorable institutional setting, makes it possible to develop mathematical talent.
Downloads
References
Artigue, M. (2008). Didactical design in mathematics education. En C. Winslow (Ed.), Nordic research in mathematics education. Proceedings from NORMA08 (pp. 7-16). Copenhague.
Assmus, D. y Frizlar, T. (2018). Mathematical giftedness and creativity in primary grades. En F. M. Singer (Ed.), Mathematical creativity and mathematical giftedness (pp. 55-81). Springer.
Barquero, B. y Bosch, M. (2015). Didactic engineering as a research methodology: From fundamental situations to study and research paths. En A. Watson y M. Ohtani (Eds.), Task design in mathematics education. New ICMI study series (pp. 249-272). Springer.
Barraza-García, Z. M., Romo-Vázquez, A. y Roa-Fuentes, S. (2020). A theoretical model for the development of mathematical talent through mathematical creativity. Education Sciences, 10(4), 118. https://doi.org/10.3390/educsci10040118
Boaler, J. (2016). Mathematical mindsets. Jossey-Bass.
Bosch, M., Chevallard, Y., García, F. J. y Monaghan, J. (Eds.) (2019). Working with the anthropological theory of the didactic in mathematics. Routledge.
Brody, L. (2005). The study of exceptional talent. High Ability Studies, 16(1), 87-96. https://doi.org/10.1080/13598130500115304
Bustamante, E. (2017). Un modelo epistemológico de referencia asociado a las sucesiones en la educación básica regular del Perú [Tesis de maestría no publicada]. Pontificia Universidad Católica del Perú.
Castela, C. y Romo-Vázquez, A. (2011). Des mathématiques a l’automatique: étude des effets de transposition sur la transformée de Laplace dans la formation des ingénieurs [De las matemáticas a la automática: estudio de los efectos de la transposición sobre la transformación de Laplace en la formación de ingenieros]. Recherches en Didactique des Mathématiques, 31(1), 79-130. https://dialnet.unirioja.es/servlet/articulo?codigo=3635944
Chaachoua, H., Bessot, A., Romo-Vázquez, A. y Castela, C. (2019). Developments and functionalities in the praxeological model. En M. Bosch, Y. Chevallard, F. J. García y J. Monaghan (Eds.), Working with the anthropological theory of the didactic (pp. 41-60). Routledge.
Chevallard, Y. (2002). Organiser l’étude [Organiza el estudio]. En J. L. Dorier (Ed.), Actes de la 11éme École d´éte de didactique des mathématiques (pp. 3-22). La pensée Sauvage.
Chevallard, Y. (2019). Introducing the anthropological theory of the didactic: an attempt at a principled approach. Hiroshima Journal of Mathematics Education, 12, 71-114. https://www.jasme.jp/hjme/download/05_Yves%20Chevallard.pdf
Clark, B. (2011). No child is just born gifted: Creating and developing unlimited potential. En J. L. Jolly, D. J. Treffinger, T. F. Inman y J. F. Smutny (Eds.), Parenting for high potential (pp. 4-11). Prufrock Press.
Dickman, B. (2018). Creativity in question and answer digital spaces for mathematics education: A case study of the water triangle for proportional reasoning. En V. Freiman y J. L. Tassell (Eds.), Creativity and Technology in Mathematics Education (pp. 233-248). Springer.
Dimitriadis, C. (2011). Developing mathematical ability in primary school through a ‘pull-out’ program: A case study. Education 3-13. International Journal of Primary, Elementary and Early Years Education, 39(5), 467-482. https://doi.org/10.1080/03004271003769939
Greenes, C. (1981). Identifying the gifted student in mathematics. The Arithmetic Teacher, 28(6), 14-17. https://www.jstor.org/stable/41191796
House, P. A. (1987). Providing opportunities for the mathematically gifted, K-12. Reston.
Karwowski, M., Jankowska, D. M. y Szwajkowski, W. (2017). Creativity, imagination, and early mathematics education. En R. Leikin y B. Sriraman (Eds.), Creativity and giftedness (pp. 183-199). Springer.
Kattou, M., Kontoyianni, K., Pitta-Pantazi, D. y Christou, C. (2015). Connecting mathematical creativity to mathematical ability. ZDM Mathematics Education, 45(2), 167-181. https://doi.org/10.1007/s11858-012-0467-1
Krutetskii, V. A. (1976). The psychology of mathematical abilities in schoolchildren. University of Chicago Press.
Leikin, R. (2011). The education of mathematically gifted students: Some complexities and questions. The Mathematics Enthusiast, 8(1), 167-188. https://scholarworks.umt.edu/tme/vol8/iss1/9
Mann, E. L., Chamberlin, S. A. y Graefe, A. K. (2017). The prominence of affect in creativity: Expanding the conception of creativity in mathematical problem solving. En R. Leikin y B. Sriraman (Eds.), Creativity and giftedness (pp. 57-73). Springer.
Mhlolo, M. K. (2017). Regular classroom teachers’ recognition and support of the creative potential of mildly gifted mathematics learners. ZDM Mathematics Education, 49(1), 81-94. https://doi.org/10.1007/s11858-016-0824-6
National Council of Teachers of Mathematics. (2000). Principles and standars for school mathematics. Autor.
Oktaç, A., Roa-Fuentes, S. y Rodríguez, M. (2011). Equity issues concerning gifted children in mathematics: a perspective from México. En B. Atweh, M. Graven, W. Secada y P. Valero (Eds.), Mapping equity and quality in mathematics education (pp. 351-364). Springer.
Radford, L (2010). Layers of generality and types of generalization in pattern activities. PNA, 4(2), 37-62. http://funes.uniandes.edu.co/609/
Rivera, F. D. (2013). Teaching and learning patterns in school mathematics: Psychological and pedagogical. Springer.
Sala, G., Barquero, B., Monreal, N., Font, V. y Barajas, M. (2016). Evaluación del potencial de creatividad matemática en el diseño de una c-unidad. En J. A. Macías, A. Jiménez, J. L. González, M. T. Sánchez, P. Hernández, C. Fernández, F. J. Ruiz, T. Fernández y A. Berciano (Eds.), Investigación en Educación Matemática XX (pp. 469-478). SEIEM.
Schindler, M., Joklitschke, J. y Rott, B. (2018). Mathematical creativity and its subdomain-specificity. Investigating the appropriateness of solutions in multiple solution tasks. En F. M. Singer (Ed.), Mathematical creativity and mathematical giftedness (pp. 115-142). Springer.
Sheffield, L. J. (2016). Dangerous myths about “gifted” mathematics students. ZDM Mathematics Education 49(1), 13-23. https://doi.org/10.1007/s11858-016-0814-8
Shriki, A. (2010). Working like real mathematicians: Developing prospective teachers’ awareness of mathematical creativity through generating new concepts. Educational Studies in Mathematics, 73, 159-179. https://doi.org/10.1007/s10649-009-9212-2
Sierra, T. A. (2006). Lo matemático en el diseño y análisis de organizaciones didácticas. Los sistemas de numeración y la medida de magnitudes continuas [Tesis doctoral no publicada]. Universidad Complutense de Madrid.
Singer, F. M., Sheffield, L. J., Freiman, V. y Brandl, M. (Eds.) (2016). Research on and activities for mathematically gifted students. Springer Open.
Sriraman, B. (2005). Are giftedness and creativity synonyms in mathematics? Journal of Secondary Gifted Education, 17(1), 20-36. https://doi.org/10.4219/jsge-2005-389
Thomas, G. (2015). How to do your case study. Sage.
Tourón, J. (2019). Las altas capacidades en el sistema educativo español: reflexiones sobre el concepto y la identificación. Revista de Investigación Educativa, 38(1), 15-32. https://doi.org/10.6018/rie.396781
Vale, I. y Pimentel, T. (2011). Mathematical challenging tasks in elementary grades. En M. Pytlak, T. Rowland y E. Swoboda (Eds.), Proceedings of the seventh congress of the European Society for Research in Mathematics Education (pp. 1154-1164). ERME.
Vergel, R. (2015). Generalización de patrones y formas de pensamiento algebraico temprano. PNA, 9(3), 193-215. http://funes.uniandes.edu.co/6440/
Villarraga, M., Martínez, P. y Benavides, M. (2004). Hacia la definición del término talento. En M. Benavides, A. Maz, E. Castro y R. Blanco (Eds.), La educación de niños con talento en Iberoamérica (pp. 25-35). Trineo.
Downloads
-
HTML
-
PDF
-
XML
-
EPUBSPANISH 103
Article abstract page views: 2692
Published
2022-02-08License
Copyright (c) 2022 Revista Electrónica de Investigación Educativa
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.