Modelo predictivo para identificar estudiantes universitarios con alto grado de deserción

Autores

DOI:

https://doi.org/10.24320/redie.2023.25.e13.5398

Palabras clave:

deserción escolar, estudiante universitario, previsión, análisis de regresión

Resumen

Disminuir la tasa de deserción estudiantil es uno de los principales objetivos de las instituciones de educación superior; para lograrlo, las universidades deben identificar con precisión a los estudiantes con mayor riesgo de abandonar los estudios antes de graduarse y centrar sus esfuerzos en ellos. De ahí surge la necesidad de implementar modelos predictivos capaces de identificar a los estudiantes que finalmente desertarán. En este trabajo se presenta un sistema de alerta temprana para identificar a los estudiantes de primer semestre con alto riesgo de deserción; el sistema se basa en un modelo de aprendizaje automático entrenado a partir de datos históricos de estudiantes de primer semestre. Los resultados muestran que el sistema puede identificar a los estudiantes “en riesgo” con una sensibilidad del 61.97%, lo que permite ofrecerles atención temprana y reducir la tasa de abandono.

Descargas

Los datos de descargas todavía no están disponibles.

Referencias

Ameri, S., Fard, M. J., Chinnam, R. B., & Reddy, C. K. (2016). Survival analysis based framework for early prediction of student dropouts. In Proceedings of the 25th ACM International on Conference on Information and Knowledge Management (pp. 903-912). https://doi.org/10.1145/2983323.2983351

Bean, J. P. (1985). Interaction effects based on class level in an explanatory model of college student dropout syndrome. American Educational Research Journal, 22(1), 35-64. https://doi.org/10.3102/00028312022001035

Berens, J., Schneider, K., Görtz, S., Oster, S., & Burghoff, J. (2018). Early detection of students at risk: Predicting student dropouts using administrative student data and machine learning methods (Working paper No. 7259). Center for Economic Studies & Ifo Institute. http://dx.doi.org/10.2139/ssrn.3275433

Bruffaerts, R., Mortier, P., Kiekens, G., Auerbach, R. P., Cuijpers, P., Demyttenaere, K., Green, G., Nock, M., & Kessler, R. C. (2018). Mental health problems in college freshmen: Prevalence and academic functioning. Journal of Affective Disorders, 225, 97-103. https://doi.org/10.1016/j.jad.2017.07.044

Chawla, N. V., Bowyer, K. W., Hall, L. O., & Kegelmeyer, W. P. (2002). SMOTE: Synthetic Minority Over-Sampling Technique. The Journal of Artificial Intelligence Research, 16, 321-357. https://doi.org/10.1613/jair.953

Chen, X. W., & Jeong, J. C. (2007, December). Enhanced recursive feature elimination. In Sixth International Conference on Machine Learning and Applications (ICMLA) (pp. 429-435). IEEE. https://doi.org/10.1109/ICMLA.2007.35

Daley, F. (2010). Why college students drop out and what we do about it. College Quarterly, 13(3), 1-5. https://eric.ed.gov/?id=EJ930391

Ferreyra, M. M., Avitabile, C., Botero Álvarez, J., Haimovich Paz, F., & Urzúa, S. (2017). At a crossroads: Higher education in Latin America and the Caribbean. World Bank.

Fodor, I. K. (2002). A survey of dimension reduction techniques (Technical Report No. UCRL-ID-148494). Lawrence Livermore National Lab. https://www.osti.gov/biblio/15002155

García, S., Luengo, J., & Herrera, F. (2015). Feature selection. In Data preprocessing in data mining (pp. 163-193). Springer International Publishing. https://doi.org/10.1007/978-3-319-10247-4_7

González, F. I., & Arismendi, K. J. (2018). Deserción estudiantil en la educación superior técnico-profesional: explorando los factores que inciden en alumnos de primer año [Student dropout in technical and vocational higher education: Exploring factors that influence freshmen]. Revista de la Educación Superior, 47(188), 109-137. https://doi.org/10.36857/resu.2018.188.510

Guo, X., Yin, Y., Dong, C., Yang, G., & Zhou, G. (2008, October). On the class imbalance problem. In 2008 Fourth international conference on natural computation (Vol. 4, pp. 192-201). IEEE. https://doi.org/10.1109/ICNC.2008.871

Hariri, S., Kind, M. C., & Brunner, R. J. (2019). Extended isolation forest. IEEE Transactions on Knowledge and Data Engineering, 33(4), 1479-1489. https://doi.org/10.1109/TKDE.2019.2947676

He, H., & Ma, Y. (2013). Imbalanced learning: Foundations, algorithms, and applications. John Wiley & Sons.

Himmel, E. (2002). Modelo de análisis de la deserción estudiantil en la educación superior [Higher education student dropout analysis model]. Calidad en la Educación, (17), 91-108. http://dx.doi.org/10.31619/caledu.n17.409

Hosmer Jr, D. W., Lemeshow, S., & Sturdivant, R. X. (2013). Applied logistic regression (Vol. 398). John Wiley & Sons.

Lakkaraju, H., Aguiar, E., Shan, C., Miller, D., Bhanpuri, N., Ghani, R., & Addison, K. L. (2015, August). A machine learning framework to identify students at risk of adverse academic outcomes. In Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (pp. 1909-1918), Sydney NSW Australia. https://doi.org/10.1145/2783258.2788620

Lin, J. J., Imbrie, P. K., & Reid, K. J. (2009. July). Student retention modelling: An evaluation of different methods and their impact on prediction results. Proceedings of the Research in Engineering Education Symposium (REES), Palm Cove, Australia. https://www.proceedings.com/content/023/023353webtoc.pdf

Observatorio de Educación Superior. (2017, July 1). Deserción en la educación superior [Dropout in higher education]. ODES Boletín (5). https://www.sapiencia.gov.co/wp-content/uploads/2017/11/5_JULIO_BOLETIN_ODES_DESERCION_EN_LA_EDUCACION_SUPERIOR.pdf

Patrick, M. E., Schulenberg, J. E., & O’Malley, P. M. (2016). High school substance use as a predictor of college attendance, completion, and dropout: A national multicohort longitudinal study. Youth & society, 48(3), 425-447. https://doi.org/10.1177/0044118X13508961

Pérez, A. M., Escobar, C. R., Toledo, M. R., Gutierrez, L. B., & Reyes, G. M. (2018). Prediction model of first-year student desertion at Universidad Bernardo O’ Higgins (UBO). Educação e Pesquisa, 44. https://doi.org/10.1590/S1678-4634201844172094

Raschka, S. (2018). Model evaluation, model selection, and algorithm selection in machine learning. arXiv Cornell University. http://arxiv.org/abs/1811.12808

Sandoval-Palis, I., Naranjo, D., Vidal, J., & Gilar-Corbi, R. (2020). Early dropout prediction model: A case study of university leveling course students. Sustainability, 12(22), 2-17. https://doi.org/10.3390/su12229314

Sistema para la Prevención de la Deserción en las Instituciones de Educación Superior-SPADIES. (2016). Reporte sobre deserción y graduación en educación superior año 2016 [Report on dropout and graduation in higher education, year 2016]. https://bit.ly/3K0RQmc

Thomas, L. (2002). Student retention in higher education: the role of institutional habitus. Journal of Education Policy, 17(4), 423-442. https://doi.org/10.1080/02680930210140257

Tinto, V. (1982). Defining dropout: A matter of perspective. New Directions for Institutional Research, (36), 3-15. https://doi.org/10.1002/ir.37019823603

Urzúa, S. (2017). The economic impact of higher education. In M. M. Ferreyra, C. Avitabile, J. Botero, F. Haimovich, & S. Urzúa (Eds.), At a crossroads: Higher education in Latin America and the Caribbean (pp. 115-148). World Bank. https://doi.org/10.1596/978-1-4648-1014-5_ch3

Descargas

Visitas a la página del resumen del artículo: 1715

Publicado

2023-05-03

Artículos similares