Breve revisión de aplicaciones educativas utilizando Minería de Datos y Aprendizaje Automático

Argelia Berenice Urbina Nájera, Jorge de la Calleja Mora


Texto completo

HTML (English) PDF (English)

DOI

https://doi.org/10.24320/redie.2017.19.4.1305

Resumen


La gran cantidad de datos utilizados en la actualidad han motivado la investigación y el desarrollo en diferentes disciplinas buscando extraer información útil con el fin de analizarla para resolver problemas difíciles. La Minería de datos y el Aprendizaje automático son dos disciplinas informáticas que permiten analizar enormes conjuntos de datos de forma automática. En este documento proporcionamos un panorama de varias aplicaciones que utilizan estas disciplinas en la Educación, particularmente aquellas que utilizan algunos de los métodos más exitosos en la comunidad de aprendizaje automático, como redes neuronales artificiales, árboles de decisión, aprendizaje bayesiano y métodos basados en instancias. Aunque estas dos áreas de la inteligencia artificial se han aplicado en muchos problemas del mundo real en diferentes campos, como la Astronomía, la Medicina y la Robótica, su aplicación en la Educación es relativamente nueva. La búsqueda se realizó principalmente en bases de datos como EBSCO, Elsevier, Google Scholar, IEEEXplore y ACM. Esperamos proporcionar un recurso útil para la comunidad educativa con esta revisión de enfoques.

Palabras clave


Education; Data mining; Machine learning

Referencias


Acevedo, G. L., Caicedo, E. F., & Loaiza, H. (2007). Selección de personal mediante redes neuronales artificiales [Personnel selection through artificial neural networks]. Revista de Matemática: Teoría y aplicaciones, 14(1), 7-20.

Anupama, S., & Vijayalakshmi, M.N. (2011). Efficiency of decision trees in predicting student’s academic performance. Computer Science and Information Technology, 2, 335-343.

Arnaut, A., & Giourguli, S. (2010). Los grandes problemas de México: VII educación [The main issues in Mexico: VII Education]. Mexico City: El Colegio de México.

Ayinde, A. Q., Adetunji, A. B., Bello, M., & Odeniyi, O. A. (2013). Performance evaluation of naive bayes and decision algorithms in mining students’ Educational Data. International Journal of Computer Science Issues, 10(4), 147-151.

Baylari, A., & Montazer, G. A. (2008). Design a personalized e-learning system based on item response theory and artificial neural network approach. Expert Systems with Applications, 39, 8013-8021.

Bishop, C. M. (2007). Pattern recognition and Machine Learning. Singapore: Springer.

Cheng, S.-C., Huang, Y.-M., Chen, J.-N., & Lin, Y.-T. (2005). Automatic Leveling System for E-Learning Examination Pool Using Entropy-Based Decision Tree. Advances in Web-Based Learning-ICWL 2005: 4th International Conference, Hong Kong, China, July 31st - August 3rd.

De Ibarrola, M. (2012). Los grandes problemas del sistema educativo mexicano [The main issues in the Mexican education system]. Perfiles educativos, XXXIV (especial), 16-28.

Demsar, J., Curk, T., Erjavec, A., Gorup, C., Hocevar, T., Milutinovic, M. et al. (2013). Orange: data mining toolbox in python. Journal of Machine Learning Research 14, 2349-2353.

García, P., Amandi, A., Schiaffino, S., & Campo, M. (2005). Using bayesian networks to detect students’ learning styles in a web-based education system. 7o. Simposio Argentino de Inteligencia Artificial-ASAI2005, 115-126. Rosario, Argentina: Universidad del Centro de la Provincia de Buenos Aires.

García, P., Amandi, A., Schiaffino, S., & Campo, M. (2007). Evaluating Bayesian networks' precision for detecting students' learning styles. Computers & Education, 49, 794-808.

Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., & Witten, I. H. (2009). The WEKA data mining software: an update. SIGKDD Explorations, 11(1).

Han, J., Kamber, M., & Pei, J. (2011). Data mining: concepts and techniques. Amsterdam: Morgan Kaufmann.

Hofer, H., & KNIME. (2016). Oper for innovation. Retrieved from http://www.knime.org

jWork.ORG, & Chekanov, S. (2016). Data melt: computation and visualization enviroment. Retrieved from http://jwork.org/dmelt

Kakavand, S., Mokfi, T., & Jafar, M. (2014). Prediction the loyal student using decision tree algorithms. International Journal of Information and Communication Technology Research, 4(1), 32-37.

Karamouzis, S. T., & Vrettos, A. (2008). An artificial neural network for predicting student graduation outcomes. Proceedings of the World Congress on Engineering and Computer Science. WCECS 2008, 1-4. San Francisco.: International Association of Engineers.

Karypis, G. (2015). Karypis Lab. Retrieved from http://glaros.dtc.umn.edu/gkhome/cluto/cluto/overview

Kotsiantis, S., Pierrakeas, C., & Pintelas, P. (2004). Predicting Students' performance in distance learning using machine learnings teachniques. Applied Artificial Intelligence, 18, 411-426.

Kriesel, D. (2013). A brief introduction to neural networks. Retrieved from http://www.dkriesel.com/en/blog/2009/1011_a_brief_introduction_to_neural_networks_published_in _epsilon_version

Kumar, B., & Pal, S. (2011). Mining educational data to analyze students' performance. International Journal of Advanced Computer Science and Applications, 2(6), 63-60.

Márquez, J. M., Ortega, J. A., Gonzalez-Abril, L., & Velasco, F. (2008). Creating adaptive learning paths using ant colony optimization and bayesian networks. Neural Networks, 2008. IEEE World Congress on Computational Intelligence, 3834-3839. Hong Kong, China.

Minaei-Bidgoli, B., Kashy, D. A., Kortemeyer, G., & Punch, W. F. (2003). Predicting student performance: an application of data mining methods with the educactional we-based system LON-CAPA. 33rd ASEE/IEEE Frontiers in Education Conference, 1-6. Boulder, CO.

Mitchell, T. M. (1997). Machine learning. Singapore: McGrawHill.

OCDE. (2010). Mejorar las escuelas: estrategias para la acción en México. Resumen ejecutivo [Improving schools: Strategies for action in Mexico. Executive summary]. Autor.

Oladokun, V. O., Adebanjo, A. T., & Charles-Owaba, O. E. (2008). Predicting students’ academic performance using artificial neural network: a case study of an engineering course. The Pacific Journal of Science and Technology, 9(1), 72-79.

Ranjan, J., & Khalil, S. (2008). Conceptual framework of data mining process in management education in India: an institutional perspective. Information Technology Journal, 7(1), 16-23.

RapidMiner. (2016). RapidMiner. Retrieved from http://rapidminer.com

Russell, P., & Norving, S. (2010). Artificial Intelligence: a modern approach (3rd. ed.). Prentice Hall.

Schiaffino, S., García, P., & Amandi, A. (2008). E-teacher: providing personalized assistance to e-learning students. Computers & Education, 51, 1744-1754.

The Apache Software Foundation. (2014). Mahout. Retrieved from http://mahout.apache.org

Thomas, E. H., & Galambos, N. (2004). What satisfies students? Mining student-opinion data with regression and decision tree analysis. Research in Higher Education, 45(3), 251-269.

Toware. (2014). Data mining resources. Retrieved from http://datamining.togaware.com

Vialardi, C., Bravo, J., Shafti, L., & Ortigosa, Á. (2009). Recommendation in Higher Education using data mining techniques. Second International Conference on Educational Data Mining (pp. 190-199). Cordoba, Spain: International Working Group on Educational Data Mining.

Witten, I., Frank, E., & Hall M. A. (2011). Data mining: Practical machine learning tools and techniques (3rd. ed.). New Zealand: Morgan Kaufmann.

Yukselturk, E., Ozekes, S., & Türel, Y. K. (2014). Predicting dropout student: an application of data mining methods in an online education program. European Journal of Open, Distance and eLearning, 17(1), 118-133.

Zorrilla, M., & Barba, B. (2008). Reforma Educativa en México: Descentralización y nuevos actores. Sinéctica, 30, 1-32. Retrieved from https://sinectica.iteso.mx/index.php/SINECTICA/article/view/189