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Abstract 

This paper presents a theoretical model for the study of mathematical talent, grounded in the 
Anthropological Theory of Didactics (ATD) and the notion of creativity. This model proposes two 
components of creative mathematical activity: the mathematical component, which supports 
mathematical techniques; and the creative component, defined by four functions: producing new 
techniques, optimizing techniques, considering tasks from different angles, and adapting a technique. 
Based on the theoretical model and a reference epistemological model on infinite sequences, a learning 
design comprising six problem situations was developed and then implemented in an institution 
established to foster mathematical talent. The analysis of two tasks performed by a pair of children offers 
a case study that illustrates how tackling challenging tasks of the same kind, in a favorable institutional 
setting, makes it possible to develop mathematical talent. 

Keywords: creativity, talent, generalization, mathematics 

Resumen 

Se presenta un modelo teórico para el estudio del talento matemático, fundamentado en la Teoría 
Antropológica de lo Didáctico y la noción de creatividad. En dicho modelo se proponen dos componentes 
de la actividad matemática creativa: la Componente Matemática, que sustenta las técnicas matemáticas; y 
la Componente Creativa, definida por cuatro funciones: producir técnicas nuevas, optimizar técnicas, 
considerar tareas desde diversos ángulos y adaptar una técnica. Con base en los modelos Teórico y 
Epistemológico de Referencia sobre sucesiones infinitas, se genera un diseño didáctico conformado por 
seis situaciones problemáticas y se implementa en una institución creada para potenciar el talento 
matemático. El análisis de dos tareas realizadas por una pareja de niños constituye un estudio de caso, que 
permite ilustrar que enfrentar tareas retadoras de un mismo tipo, bajo condiciones institucionales 
propicias, posibilita el desarrollo del talento matemático. 

                                                 
1 Original article published in Spanish. Translated by Joshua Parker. 
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I. Introduction  

The literature contains a variety of paradigms, models, and definitions relating to talent (Mhlolo, 2017). 
Tourón (2019) proposed the existence of two paradigms for talent: the traditional and the current 
paradigm. The traditional paradigm is closely associated with the concept of intelligence and standardized 
tests like the IQ test, with talent being seen as an innate, unchanging trait. This biological conception of 
talent, which places a focus on a more efficient or effective, enhanced development of brain functions, is 
a deeply-rooted idea (Clark, 2011). Sheffield (2017) notes that this belief that mathematical competence is 
determined by genetics may prove harmful both for students who believe they do not have a 
“mathematical mind” and for those who are considered talented and feel great pressure as a result of the 
expectations this raises for their performance.  

By contrast, in the current paradigm, talent is multifaceted and evolves in response to individual conditions. 
In particular, Villarraga et al. (2004) recognize that talent is not fixed and can be developed under the right 
conditions, with stimulating support. However, there is insufficient evidence on how this development is 
achieved. 

Singer et al. (2016) report that in most models and approaches, talent is defined as the potential to perform 
a given activity successfully. Of particular note are approaches to mathematical talent from professional 
and educational perspectives. For example, Krutetskii (1976) defines professional mathematical talent as 
a unique set of mathematical skills that enables successful performance in mathematical activity and, from 
an educational perspective, as the possibility of a creative mastery of the discipline. This relationship 
between talent and the creative mastery of mathematics has been the subject of research for several 
decades, and although the word “creativity” has not always been explicitly mentioned, it is possible to find 
characteristics alluding to creativity, including but not limited to developing unique solutions to solve 
problems, flexibility, and interpreting the information presented in problems in an original manner 
(Greenes, 1981; House, 1987). This relationship between creativity and talent in research on mathematical 
education remains an open question. Leikin (2011) maintains that research on education for talented 
individuals, and its relationship with creativity, should be oriented in two interrelated directions: a 
theoretical direction and an applied direction. The former would seek to understand the nature of 
creativity and mathematical potential, and the latter would serve to develop mathematical potential and 
promote mathematical creativity.  

Two currents can be observed in the way talent is treated: differential treatment based on the 
identification and characterization of talented individuals (Brody, 2005; Dimitriadis, 2011), and treatment 
based on an inclusive approach (Boaler, 2016; Oktaç et al., 2011), which calls for didactic proposals to be 
developed for heterogeneous groups.  

In sum, mathematical talent is closely related to mathematical creativity, talent can be developed, and 
therefore theoretical models need to be produced to understand the conditions under which this 
development is made possible. Given all the above, this research adopts a broad view of mathematical 
talent, defining it as the potential shown by individuals in successfully handling certain types of tasks that, 
in effect, result in creative mathematical activity. We hypothesize that the development of mathematical 
talent depends not only on individual characteristics but also on the existence of favorable conditions for 
this development. To prove or disprove this hypothesis, in this study a specialized learning design was 
produced and implemented in an institution created to develop mathematical talent. 

This paper examines the creative activity of a pair of students and is organized in four sections. The first is 
devoted to the Praxeological Model of Mathematical Talent (MPTM, in Spanish), its origin and its structure. 
The second section presents the study, the stages of conception of the learning design, the conditions in 
which it was implemented and the role of the instructor. The third presents the results of an analysis of the 
activity of a pair of students and lastly, the fourth section offers a discussion and conclusions.  
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1.1 The praxeological model for talent development (MPTM): origin and development 

The MPTM falls within the framework of the Anthroplogical Theory of Didactics (ATD) and the notion of 
creativity (Karwowski et al., 2017; Kattou et al., 2013; Mann et al., 2017; Sriraman, 2005).  

ATD is a theory that enables the study of human activity in its institutional dimension (Bosch et al., 2019). 
An institution is defined as a stable social organization that makes it possible to tackle problems effectively, 
thanks to the material and intellectural resources made available and the conditions established for 
performing these tasks (Castela & Romo-Vázquez, 2011). Institutions provide a framework for human 
activity, made possible by, for example, a class, a talent support program or an industry. The smallest unit 
of analysis for human activity is praxeology, made up of four components: task type 𝑇 , technique 𝜏 , 
technology 𝜃 and theory 𝛩. The task type is “what is done”, the technique is “how it is done”, technologies 
are “the discourses that produce, explain, and validate techniques”, and theory refers to “broader 
discourses that produce, explain, validate, and justify the technologies” (Chevallard, 2019). 

The construction and reconstruction of a praxeology is associated with six moments of study: the 
encounter with the task (M1), which is the first contact with some element of the praxeology; the 
exploratory moment (M2), in which a need arises to propose one or more techniques to solve the problem; 
the technical work moment (M3), where variants of the techniques produced are explored and even 
improved; the technological-theoretical moment (M4), in which elements common to the techniques 
developed are recognized and their limitations and scope identified; the institutionalization moment (M5), 
in which it becomes possible to identify task types precisely, as well as associated techniques and the 
technological discourse underpinning them; and the evaluation moment (M6), in which the range of 
techniques produced and the pertinence of the technological discourse are determined (Chevallard, 2002).  

The praxeologies have different levels of complexity: punctual (or specific), local, regional, and global 
(Chevallard, 2002). A punctual praxeology is defined as having a single task type, technique, technology, 
and theory; a local praxeology encompasses a number of punctual praxeologies that have the same 
technology; a regional praxeology is made up of several local praxeologies that have the same theory; a 
global praxeology is made up of several regional praxeologies; and lastly, the disciplinary praxeology 
includes all of the above. These levels are illustrated here using the concept of sequences (Figure 1). 

Figure 1. Nesting of mathematical praxeologies 

 

Praxeological levels enable us to organize mathematical work through a Reference Epistemological Model 
(REM), which is constructed from a study of different sources (for example, historical works, treatises, 
textbooks) and provides a point of reference to interpret mathematical activity based on the tasks posed, 
the techniques generated, and associated technologies (Sierra, 2006).  
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Meanwhile, mathematical creativity is often linked to four components: 1) fluency, 2) flexibility, 3) 
originality (Kattou et al., 2013), and 4) elaboration (Assmus & Frizlar, 2018; Mann et al., 2017; Schindler et 
al., 2018). The term “creativity” is typically used to refer to the ability to produce new ideas, approaches or 
actions, and present them from thought into reality (Vale & Pimentel, 2011). At an educational level, 
Sriraman (2005) defines creativity on the basis of resolution processes that prove unusual or insightful, and 
the formulation of new possibilities that make it possible to reconsider earlier problems from a new angle. 

The MPTM, initially presented in Barraza-García et al. (2020), is based – like other developments of the 
praxeological model – on work by Castela and Romo-Vázquez (2011) and Chaachoua et al. (2019). In the 
MPTM, task types and techniques are underpinned by two components of technology: the mathematical 
component 𝜃𝑚 and the creative component 𝜃𝑐. The mathematical component 𝜃𝑚 is associated with what 
in other conceptual frameworks is known as mathematical skills – reasoning mathematically, economy of 
thought, expressing logical and sequential thinking, thinking abstractly, generalizing, and others – that 
comprise elements originating mostly from mathematical institutions (teaching mathematics and 
mathematics as a discipline). The creative component 𝜃𝑐  is made up of elements that enable the production 
of unique, unusual, flexible and insightful techniques that comprise elements originating, chiefly, from 
experience in different institutions: family, school, the outside world, and clubs, among others. 

The MPTM identifies four major institutions to develop mathematical talent: mathematics-producing 
institutions, P(M); mathematics teaching, E(M); mathematical talent support, AT(M); and life, V(M). The 
MPTM is represented through the creative praxeology shown in Figure 2. 

Figure 2. Graphical representation of the MPTM 
 

 

The mathematical component 𝜃𝑚 of the MPTM refers to the technology of a mathematical praxeology that 
validates, explains and justifies the mathematical techniques; the creative component 𝜃𝑐  refers to 
creativity and has four technological functions: 

F1. Producing unique techniques: In response to a novel task, different steps are taken without following a 
routine. New ideas are generated and new techniques constructed after exploring the task and how it 
relates to what is already known. For example, a suggestion may be made to break the task down into less 
difficult subtasks and then combine them to reconstruct the task and achieve the goal.  

F2. Optimizing the technique: Considering a variety of paths to perform the task and choosing the “optimal” 
path based on the number of steps and the mathematical knowledge involved. For example, opting to 
construct a general rule (verbal, iconic or alphanumeric), instead of producing a series of drawings, to 
determine the properties of an unknown term in a figural sequence.  

F3. Considering tasks from different angles: This consists in analyzing a task without limiting oneself to a 
specific branch of mathematics (algebra, geometry, etc.) or even a specific discipline (physics, visual arts, 
etc.), either producing steps geared towards the instructions of the task (recognizing knowledge that 
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warrants staying on the same path or changing path), or by producing different techniques to complete a 
single task. 

F4. Adapting a technique: This consists in identifying how a technique produced works, and its scope and 
limitations, in order to implement the technique in another task, with certain modifications. First the 
technique is validated so it can then be adapted and even improved in solving another task. 

These functions are characterized by the fact they do not follow an order of appearance and are also closely 
interrelated. For example, the functions “producing unique techniques” (F1) and “considering tasks from 
different angles” (F3) may derive from the adaptation or optimization of a technique (F4 and F2). Thus, 
creative mathematical activity becomes clear when a relationship is established between the creative and 
mathematical components in a task. One hypothesis of the MPTM is that, in the face of a challenging task 
(Sriraman, 2005), the creative component favors development of the mathematical component.   

II. Method 

This research is qualitative and employed a case study methodology (Thomas, 2015). The conception and 
analysis of the learning design is based on the four phases of didactic engineering proposed by Artigue 
(2008), considering how they have been adapted in ATD (Barquero & Bosch, 2015). In this study, these four 
phases are the following: 1) construction of the REM of infinite real sequences, 2) creation of the local 
praxeology “infinite real sequences” and a priori analysis, 3) implementation and in vivo analysis, and 4) a 
posteriori analysis.  

2.1 Phase 1. The REM of infinite real sequences 

The institutions P(M), E(M), and AT(M) were considered by analyzing different sources to create the REM. 
First, we explored the origin of sequences by drawing on mathematical works by P(M) and historical studies 
(Bustamante, 2017). Next, we examined mathematical analysis textbooks for basic-level education 
produced by Mexico’s Secretariat of Public Education, as well as the principles and standards of 
mathematics education (National Council of Teachers of Mathematics, 2000), which represent E(M), and 
studies on mathematical talent, which represent AT(M). The praxeologies identified are shown in Figure 3. 

Figure 3. Diagram of the praxeologies in the study of infinite sequences in E(M) and AT(M) institutions 
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We identified the local praxeology of infinite real sequences, supported by the mathematical technology 
of the principle of induction, which makes sure that all terms in the sequence are determined by a general 
rule associated with a pattern in two domains: the geometric and the numerical domains. The local 
praxeology that served as a basis for the learning design is detailed below. 

The task type is to determine the rule 𝑎𝑛 for an infinite sequence for 𝑛 ∈ ℕ. 

The general technique comprises three steps associated with the first four moments of study: 

1. Study the first terms and determine the relationship between the first 𝑎𝑖 and 𝑖 = 1, 2, 3, … (M1 and 
M2). 

2. Construct general rules for the nth term (M2 and M3). 

3. Implement the rules constructed in step (2) for specific near and far terms within the sequence, 
for example, for 𝑛 = 10 or 𝑛 = 20 (M2 and M3) and validate for 𝑛 + 1 (M4). 

The mathematical technology 𝜃𝑚  is the principle of induction that validates the rule 𝑎𝑛  for a figural or 
numerical sequence, or a figural sequence with a tabular aid, through recursive and/or algebraic 
generalization. Recursive generalization occurs when similarities are observed in the base terms 
(perceptual field), from which a relationship of dependency can be considered between 𝑎𝑛 and 𝑎𝑛+1. This 
serves as a basis to construct and validate a rule for term 𝑎𝑛+1  that depends on the previous term 𝑎𝑛 
(inferential field). This process is useful to determine “near” terms in a sequence (Radford, 2010; Rivera, 
2013; Vergel, 2015). Algebraic generalization is displayed when a rule or verbal expression is constructed 
based on the terms of the perceptual field or on the recursive rule, determining a relationship of 
dependency between n and the term of the sequence 𝑎𝑛 (with no need to obtain the previous term 𝑎𝑛−1), 
for 𝑛 𝜖 ℕ. This serves to determine both “near” and “far” values (Radford, 2010; Rivera 2013; Vergel, 2015). 
Lastly, the theory supporting 𝜃𝑚 is mathematical analysis. 

2.2 Phase 2. The local praxeology “infinite real sequences” 

To create the local praxeology “infinite real sequences”, six problems were chosen for which the task type 
was to determine the rule 𝑎𝑛  from an infinite sequence for 𝑛 ∈ ℕ , and which had been considered in 
research on mathematical talent and the generalization process. Each problem is composed of a set of 
open-ended, challenging tasks. The associated techniques allow connections to be made between 
different domains, specifically arithmetic, algebra, and geometry. This characteristic has been strongly 
associated with creativity in other studies (Sala et al., 2016) and with the technological function of 
approaching techniques from different perspectives and paths (F3) in the MPTM. These tasks enable the 
exploration and production of the three general steps of the technique, beginning with an intuitive 
exploration of the first terms (M1) and then analyzing the relationship between the terms and identifying 
a general rule to find any term in the sequence, based on a pattern of construction. The six problems were 
presented in order of increasing complexity with the aim of demonstrating the creative component 
through ever more sophisticated techniques and a progression in the mathematical component, and hence 
the development of mathematical talent. The first two problems in the learning design are presented 
below (Figures 4 and 5), and the third is given in the results section. 
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Figure 4. Problem 1 in the learning design implemented 

Problem 1 was proposed in the first session as it is associated with an exponential rule, seldom explored 
by students of these ages. To calculate the area in task 2, students were not asked to produce an algebraic 

rule (𝑎𝑛 =
3𝑛

4𝑛). Rather, the analysis was centered on the increases and therefore on producing a recursive 

rule (𝑎𝑛+1 =
3

4
𝑎𝑛). 

Figure 5. Problem 2 in the learning design implemented 

 

This problem proposes concrete material for the construction of algebraic generalization rules of the type 
𝑎𝑛2 + 𝑛. In task 3, a subtask was included on the creative process of inventing a pattern based on adapting 
and optimizing the techniques devised in the first two tasks.  

2.3 Phase 3. Implementation, conditions in which the implementation occurred, and in vivo 
analysis 

The learning design was implemented in a mathematics club (MC), an institution established with funding 
from the government of Baja California (Mexico) on the condition that 25 public schools participate. An 
instrument was administered with 5 open-ended combinatorial tasks, which enabled the selection of 26 
students – 12 girls and 14 boys – from fifth and sixth grades in elementary school (10-12 years old). A total 
of 10 sessions were held, 8 of which focused on implementing the learning design, and they were 



Creative Mathematical Activity and Developing Mathematical Talent  
Trough the Praxeological Model 

Barraza-García et al. 

Revista Electrónica de Investigación Educativa, Vol. 24, e01 8 

videotaped and transcribed. Parents participated in the remaining two sessions: the first (introductory) 
session and the last (closing) session. Students worked in pairs, with no restriction on individual or group 
work.  

The implementation of the learning design was led by an instructor (a researcher and author of this paper), 
whose role is described below in relation to the moments of study. To facilitate the first encounter with 
the task (M1), the instructor guided students toward identifying what the task required of them and 
explored with the group certain concepts they may have been unfamiliar with: for example, the line at 
infinity, a plane. This also encouraged the group to explore the relationship between 𝑎𝑖  and 𝑖, particularly 
for the first terms of each sequence. For the exploratory and technical work moments (M2 and M3), the 
instructor proposed verbalized subtasks to the pairs of students, who were free to work autonomously. 
Similarly, once students had achieved the goal of each task, they were encouraged to consider techniques 
from other angles (F3). In general, the instructor showed interest in all the techniques proposed by 
students, encouraging them to explain, compare and try new solution paths or explore particular cases. At 
the end of each session, a group exercise was organized in which students presented their techniques, 
discussed their validity, relevance and economy (using fewer steps to complete the task), and enriched 
their experiences (M4, M5, and M6). The in vivo analysis was performed almost at the same time the design 
was implemented, enabling adjustments to be made based on the work produced by students. 

2.4 Phase 4. A posteriori analysis 

The a posteriori analysis was based on the MPTM and on the moments of study, and served to elucidate 
the students’ creative mathematical activity and mathematical talent development, as described below. 

III. Results 

The results presented are based on an analysis of the way a pair of students handled two tasks in problem 
3 (Figure 6), which show a progression of creative functions. In other words, they constitute a 
representative case study (Thomas, 2015). 

Figure 6. Tasks from problem 3, presented in the fourth session of the MC 

 

This problem, implemented in the third session, is an adaptation of one proposed in Rivera (2013) to 
exemplify three types of inferential reasoning – abductive, inductive, and deductive – during the 
generalization process and introduce students to the formulation of quadratic expressions of the type 
𝑎𝑛2 + 𝑏𝑛 + 𝑐, for 𝑛, 𝑎, 𝑏, 𝑐 ∈ ℕ. The intention in task 1 is for students to construct techniques that can be 
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implemented in task 2. Both tasks involve determining an algebraic rule 𝑎𝑛 that can be used to obtain any 
term of the sequence, near or far (for example, 𝑛 = 10, 𝑛 = 20, 𝑛 = 500). 

The technique used to solve these tasks is to construct a relationship between the number of squares and 
the number of the stage or term, in three main steps: 1) study the first terms and construct an initial rule 
to determine a relationship between the number of cubes and the term of the sequence (Figure 6); 2) 
construct an “abductive” rule (Rivera, 2013, p. 27) for the nth term (see Table 1); and 3) verify the general 
rule for the following term, 𝑛 + 1. 

Table I. Construction of the number of squares in the tasks 

Term 
Squares in 

task 1 
Squares in 

task 2 
1 5 14 
2 9 26 
3 13 40 
4 17 56 
⋮ ⋮ ⋮ 
𝑛 4𝑛 + 1 𝑛2 + 9𝑛 + 4 

 

Table 2 shows the techniques developed by the students (S1 and S2) and the mathematical component 
and creative component in task 1. 
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Table 2. Praxeological analysis for task 1 

Steps of technique and 
relationship with moments 

of study 
Students’ technique 

Mathematical (𝜽𝒎) and creative 
(𝜽𝒄) components 

1. Explore the first terms 
(M1). 

S1: The first stage has 5 squares, the second has 9. 
S2: And the third has 13. 

𝜃𝑚: identification of regularity 
and construction of the 
recursive rule 
 𝑎𝑛+1 = 𝑎𝑛 + 4. 

2. Identify a recursive 
process from a numerical 
pattern (M2). 

S1: Now I know. The next one must have… 17 
squares. 
S2: How come? 
S1: Because in the second stage there are 9… 4 
more than in the first stage. And in the third stage 
there are 4 more than in the second one. 

3. Identify a recursive 
process from a figural 
pattern (M2). 

S2: Ah, it’s just I was thinking of something else, for 
example here, there are 2 and 2 [referring to the 
squares at the “ends” that appear in the first stage], 
and here there are 4 and 4 [referring to the second 
stage], and here there are 6 and 6 (Figure 7). 
S1: But I think it would be the same, because the 
next one would have 8 and 8. That is to say, 4 more 
than where there’s 6 and 6. 
S2: The problem is if we do it like that, it’s going to 
be very slow for other figures, because it would be 
one by one, adding four. 

𝜃𝑐: S2 proposes a novel 
technique (F1) that 
deconstructs (Rivera, 2013) 
the stages. 
𝜃𝑚: identifies a figural pattern 
(Figure 8). 
∗ The technique is innovative 
(F1) because students had not 
used it previously. 

4. Determine an algebraic 
rule from a reconfiguration 
of squares (M3). 

Instructor: What have you been thinking? 
S2: Well, here for example, the 1 in the stage is 
when there’s 1 square here and here, and the same 
goes for stage 2 and stage 3. 
Instructor: So what would it be for any given stage? 
S2: It would be the stage multiplied by two, and 
then we add that result twice because there’s the 
same on both sides, and then we add 1 for the 
middle and that’s it. 

𝜃𝑐: optimization (F2) of the 
recursive rule by S2. 
𝜃𝑚: The algebraic rule 𝑎𝑛 =
(2𝑛) × 2 + 1 is proposed based 
on the figural pattern. 
 

5. Implement the algebraic 
rule for the term 𝑛 = 20 
(M3). 

Instructor: And, for example, in stage 20 how many 
squares would there be? 
S2: There would be 20 times 2, 40, then times 2 
again, which would be 80, plus the one in the 
middle… there would be 81 squares. 

𝜃𝑚: S2 implements the 
algebraic rule for 𝑛 = 20. 

6. Construct a new 
algebraic rule (M4). 

S1: Or could it not also be the result of multiplying 
the number of the stage by 4 and adding 1? 
Instructor: Why? 
S1: Because 2 times 2 is 4 and there are 4 sides in all 
stages. 

𝜃𝑐: S1 optimizes S2’s technique 
(F2) and proposes a new 
technique based on the figural 
and numerical pattern (F3), 
and 
𝜃𝑚: determines the algebraic 
rule 𝑎𝑛 = 4𝑛 + 1. 

 

Figure 7. Students’ written notes in task 1 
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Figure 8. Figure reconfiguration technique in task 1 

 

Steps 3, 4, and 6 of the technique show how the creative component favors the production of algebraic 
rules, demonstrating creative mathematical activity. Student S2 deconstructs (Rivera, 2013, p. 66) the 
figures in each stage to find two equivalent algebraic rules, the first of which comes from identifying a 
vertical symmetry in the figures in each stage (Figure 8). The second is born of the observation that each 
set of squares in a corner is equal to the number of the stage, which must be counted four times before 
adding one to account for the square in the middle. 

Based on these two reconfigurations, the students propose generalization rules that can be implemented 
for near terms (𝑛 = 4, 𝑛 = 5, … ) and far terms (𝑛 = 100, 𝑛 = 200, … ). 

Working in pairs allows students to propose two different techniques to determine algebraic rules. In 
addition, communication between students is key to developing creativity. Initially, student S1 proposes a 
strategy based on an observation of the numerical pattern, but after interacting with student S2, who had 
focused on the figural pattern, S1 optimizes the algebraic rule and validates it from a figural (“4 sides in all 
stages”) and numerical  (2 × 2 = 4) perspective.  

Table 3 shows the techniques developed by the students (S1 and S2) in completing task 2, and the 
mathematical and creative components of the technology.  
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Table 3. Praxeological analysis for task 2 

Steps of the technique 
and relationship with 

moments of study 
Students’ technique 

Mathematical (𝜽𝒎) and creative 
(𝜽𝒄) components 

1. Explore initial terms 
(M1). 

Student S2 produces a drawing for image 4 and 
determines the number of unshaded squares it 
contains.  
S1: In image 1 there are 14 squares, in the second one 
there are 26 shaded squares and in the third there are 
40. But I think we also need to count the squares that 
are not shaded… there are 16, 46, and 92 of them. 

𝜃𝑚: identification of a figural 
pattern implemented in the 
drawing of image 4. A technique 
is proposed involving a list with 
the relationship between the 
number of the image, the 
shaded squares, and the 
unshaded squares. 2. Identify a recursive 

process from a 
numerical pattern (M2). 

They prepare a list of the number of shaded and 
unshaded squares, based on the number of the image 
(Figure 9). 
S1: So, what if we subtract them? 
S2: [They subtract the shaded squares from the 
unshaded squares] That would be 2, 20, 42 and 58. 
S1: But I can’t think how they follow on. 

3. Determine an 
algebraic rule for the 
corner pattern (M3). 

S2: I say we’d do better to look at the figures. How 
about I look at the pattern in the corners and you look 
at the pattern in the middle [referring to the 
rectangular shape in the center of each image]? 
Instructor: What have you found? 
S2: [Referring to the “corner pattern”] I found that for 
these, you need to multiply the number of the image 
by 2 and add 1 for the square in the middle. For 
example, for image 3, there are 3 here and here and 
one more in the middle. Because there are 4 that are 
the same, we multiply that by 4 (Figure 10). 

𝜃𝑐: production of a novel 
technique (F1) in which the main 
task is split into two less difficult 
tasks. This serves as a basis to 
optimize the technique (F2), and 
𝜃𝑚: an algebraic rule is 
constructed for the corner 
pattern (𝑒𝑛). 𝑒𝑛 = (2𝑛 + 1) × 4. 

4. Determine an 
algebraic rule for the 
center pattern (M3). 

S1: [Referring to the “center pattern”] And this is a lot 
like one we did last class. Do you remember? The one 
with the cubes [referring to construction 2 in Figure 
5].  
S1: [Referring to image 2]. And so I think this would 
be 2 times 2, 4, plus another 2, that gives us 6. And for 
number 3, it would be 3 times 3, plus another 3, which 
gives us 12. 
S2: And the total pattern would be the corner pattern 
plus the center pattern. 

𝜃𝑐: S1 recognizes that one 
technique can be applied to two 
different tasks (F3), origami 
cubes and shaded squares, 
adapting this technique (F4) and 
𝜃𝑚: constructing an algebraic 
rule for the center pattern (𝑐𝑛). 
𝑐𝑛 = 𝑛2 + 𝑛. 

5. Implement the 
algebraic rule for the 
term 𝑛 = 20 (M3) 

Instructor: So, how many shaded squares would there 
be in image 100? 
S2: We need to multiply 100 by two, plus one, and 
then multiply that four times, and then add the bit in 
the center, which would be 100 squared, plus 100.  

𝜃𝑚: integration of the two 
subtasks and determination of 
the number of shaded squares 
(𝑎𝑛). 

𝑎𝑛 = 𝑒𝑛 + 𝑐𝑛 
       = [(2𝑛 + 1) × 4] + [𝑛2 + 𝑛]. 

 
Figure 9. Student S1’s list in step 2 of the technique in task 2 
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Figure 10. Student S2’s notes in step 3 of the technique in task 2 

 

 

The students demonstrate creative mathematical activity in steps 3 and 4, by producing a novel technique, 
dividing the task into two convenient subtasks and then combining the results to complete task 2. They 
associate and adapt the origami cube technique in this new task, thereby displaying three functions of the 
creative component (F1, F2, and F4) and the technical work moment (M3). It is also clear that the 
deconstruction technique in task 1 is similar to that of task 2, in that sets of squares in the corners and sets 
of squares in the center are considered separately (F4). The students’ reconfiguration of the three tasks is 
illustrated below (Figure 11). 

Figure 11. Reconfiguration of stages for three distinct tasks 
 

 

In addition, we note that the reconfiguration of the figural pattern in the last task is a combination of the 
previous two. Specifically, the corner pattern of task 1 relates to the corner pattern in task 2 and the 
origami cube task pattern (Figure 5) relates to the central pattern in task 2. 

Their experience constructing the algebraic rule 𝑛(𝑛 + 1) + 2  in the origami cube task was crucial in 
constructing the algebraic rule 𝑛(𝑛 + 9) + 4 in task 2 (F4). Dividing tasks into less difficult subtasks is a 
technique implemented by students on several occasions (F4). For example, in performing one task in 
problem 4 of the learning design, “Determine how many intersections are formed between any number of 
nonparallel straight lines, such that only two lines can be concurrent with each other”, the students 
propose the algebraic rule 𝑛(𝑛 + 1)/2 + 1  using the same method. By adapting their techniques (F4), 
students are able to propose novel techniques (F1) to construct ever more sophisticated rules and thus 
develop the mathematical component.  
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We observed that student S2 used pair work to divide the task into two subtasks and complete it 
satisfactorily. Although there is a clear impact from the strategies based on the figural pattern, 
implemented by student S2, in the way the two tasks are developed, student S1 persists in identifying 
numerical patterns. This confirms the establishment of a dialectic between individual and collective work, 
both within pairs and the group itself, favoring the expression of creative mathematical activity. 

The analysis of these two tasks, while limited, illustrates the way in which the learning design was 
implemented to enable the development of mathematical talent. The local praxeology, made up of six 
problems associated with the same task type, namely “determine the general rule in infinite sequences”, 
was crucial in ensuring the emergence and development of creative functions throughout all the tasks. 
Working with the initial terms of a sequence allowed students to explore freely the characteristics of each 
of the elements and the relationship between them, and determine subsequent terms. Their techniques 
became increasingly sophisticated, with students reusing elements from previous techniques, adapting 
them and making them ever more effective. The instruction to determine a “far” stage, image or term – 
number 20, number 100 – was key to evaluating each technique and drawing closer to or finding the 
general rule for the sequence. The students that initially spent most time determining the relationship 
between the first terms were able to produce novel techniques, share them with the group, and prove 
their validity.  

IV. Discussion and conclusions 

In the MPTM model, creative mathematical activity, which demonstrates mathematical talent, is 
characterized by the relationship between the mathematical 𝜃𝑚  and creative 𝜃𝑐  components of the 
technology, based on a Reference Epistemological Model and determined by a given institution. In 
particular, an analysis of the way problem 3, taken as a whole (Tables 2 and 3), was handled by the pair of 
students shows that proposing unique techniques (F1), optimizing and adapting techniques (F2 and F4, 
respectively), and considering tasks from different angles (F3) facilitate the development of generalization 
rules, the mathematical component of the technology. This is consistent  with the literature on 
mathematical talent and creativity; for example, Kattou et al. (2013) conclude that mathematical creativity 
is a subcomponent of mathematical ability. However, there is no consensus in the literature on the way 
these two concepts are linked, and there are even contradictory opinions on this relationship (Singer et al., 
2016). In this regard, this research provides a theoretical contribution in line with Sala et al. (2016), in the 
sense that the dimensions of mathematical activity shown by the moments of study are closely associated 
with creativity.  

More precisely, this study shows that developing mathematical talent requires the construction of a local 
praxeology, allowing the generation of a large number of techniques based on the same technology and 
thus facilitating moments 4, 5, and 6. By analyzing the limits and scope of the techniques (M4) in tasks of 
the same type, it becomes possible to optimize them (F2) and consider them from different angles (F3). 
Similarly, assessing techniques and their elements (M6) in more than one problem situation enables the 
institutionalization of creative mathematical activity (M5). In other words, producing unusual, flexible and 
unique techniques, supported by mathematical technologies that may be derived from different areas – 
arithmetic, algebra or geometry – is acknowledged as valid. These moments are the dimensions or 
processes of mathematical activity outlined in Sala et al. (2016).  

The construction of this local praxeology requires favorable institutional conditions and collaborative work 
in small and large groups, which enable the communication and discussion of ideas and mathematical 
concepts as an outlet for creativity (Shriki, 2010). It should be stressed that the challenges proposed in the 
learning design and validated by an a priori analysis based on the MPTM require empirical validation 
(implementation), an in vivo and a posteriori analysis, because if the tasks prove to be routine for one or 
more students, this will prevent expression of the creative component and the development of 
mathematical talent. Alternatively, the creative component will be subject to the way the design is 
managed, meaning variants of tasks will need to be created in situ. 
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The implementation of new learning designs in similar institutional conditions, in both in-person and virtual 
settings, would allow for a broader empirical validation of the MPTM. This can be achieved by following the 
methodology set forth in this paper and producing local praxeologies based on an REM, which means 
choosing a mathematical technology and proposing open-ended, challenging tasks in relation to this 
technology to enable the production of novel techniques. These techniques can be generated by exploring 
and recognizing relationships, and made more sophisticated through didactic variables, such as, in this case, 
determining a sufficiently large ‘𝑛’. Similarly, it would be of great interest to create a learning design based 
on inventing problems, as this task type is strongly associated with mathematical creativity (Dickman, 2018; 
Sala et al., 2016). This poses a challenge in terms of the mathematical component to be chosen. 

We believe the MPTM model can be used to generate learning designs to be implemented in a regular 
classroom, because in conjunction with the REM, it allows curriculum content to be reorganized into 
creative mathematical praxeologies at a local level. However, this requires a change in the role played by 
parents, in addition to hard work on the part of the mathematics teacher, in order to overcome institutional 
conditions and restrictions marked by rigid curricula, learning that is centered on managing algorithms, and 
teaching that is based on presenting concepts. This is extremely complex, but necessary to achieve the 
development of mathematical talent from an inclusive perspective. Generally speaking, the MPTM model 
is a theoretical tool that offers a framework for studies on developing mathematical talent under certain 
institutional conditions, which play a fundamental role in determining creative mathematical activity and 
can be created in a regular classroom or in talent support settings. 
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